您现在的位置是: 首页 > 优质范文 优质范文
勾股定理教案_勾股定理教案北师大版
tamoadmin 2024-08-11 人已围观
简介1.人教版九年级数学教案教案配套课件下载2.勾股定理证明3.一定是直角三角形吗教案4.勾股定理的知识点5.北师版九年级下册数学教案 光阴迅速,一眨眼就过去了,我们的工作同时也在不断更新迭代中,做好可是让你提高工作效率的方法喔!你所接触过的都是什么样子的呢?下面是我整理的数学八年级下册老师工作,希望对大家有所帮助。 数学八年级下册老师工作1 一、教材分析 第十一章 等三角形 本章主要
1.人教版九年级数学教案教案配套课件下载
2.勾股定理证明
3.一定是直角三角形吗教案
4.勾股定理的知识点
5.北师版九年级下册数学教案
光阴迅速,一眨眼就过去了,我们的工作同时也在不断更新迭代中,做好可是让你提高工作效率的方法喔!你所接触过的都是什么样子的呢?下面是我整理的数学八年级下册老师工作,希望对大家有所帮助。
数学八年级下册老师工作1一、教材分析
第十一章 等三角形 本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。教学难点:领会证明的分析思路、学会运用综合法证明的格式。教学关键提示:突出全等三角形的判定。
第十二章 本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形与正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。教学关键提示:突出分析问题的思维方式。
第十三章 本章通过对平方根、立方根的探究引出无限不循环小数,进而导出无理数的概念,从而把有理数扩展到实数。教学重点:平方根、立方根、无理数与实数的有关概念与性质。教学难点:平方根及其性质;有理数、无理数的区别。教学关键提示:从生活实际入手,让学生经历无理数的发现过程,从而理解并掌握实数的有关概念与性质。
第十四章 本章主要学习函数及其三种表达方式,学习正比例函数、一次函数的概念、图象、性质与应用,并从函数的观点出发再次认识一元一次方程、一元一次不等式及二元一次方程组。教学重点:理解正比例函数、一次函数的概念、图象与性质。教学难点:培养学生初步形成数形结合的思维模式。教学关键提示:应用变化与对应的思想分析函数问题,建立运用函数的数学模型。
第十五章的乘除与因式分解 本章主要学习整式的乘除运算与乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。教学关键提示:引导学生运用类比的思想理解因式分解,并理解因式分解与整式乘法的互逆性。
二、学生情况分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师与学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。上学年学生期末考试的成绩平均分为116分,不及格的学生仅有7人。总体来看,成绩还算不错。七年级尚未出现两极分化,绝大多数学生都在认真学习。本学期还要在学生学习习惯的养成上,在学生学习主动性上下大功夫。
三、教学目标
1、知识与技能目标 学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。
2、过程与方法目标 掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。
3、情感与态度目标 通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。
四、教学设想
1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。
2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。
3、搞好阅卷分析。在条件许可的情况下,尽可能用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。
4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。
5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的`能力,后进生要激发其学习欲望,针对其基础和学习能力取针对性的补救措施。
6、成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。
7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。
五、提高教学质量的措施
1、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后,查漏补缺。
4、不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。
5、教学中注重自主学习、合作学习、探究学习。
6.经常听取学生良好的合理化建议。
7.以“两头”带“中间”战略思想不变。深化两极生的训导。
六、培优辅差
优生辅导:加大难度,提高灵活运用知识的能力,培养合作学习、探究学习的能力。班级取前10人,每周开展活动一次。
差生辅导:狠抓基础,立足课本,提高信心,激发兴趣。班级取最后10名,每周辅导一次(或二次,视章节难度)。
数学八年级下册老师工作2一、指导思想
教育学生掌握基础知识与基本技能培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到九年级的毕业和升学。八(2)班人数为50人,七年级下期学生期末考试高分人数9人,及格人数27人,低分6人。八(2)班后进面较大,很多同学基础差,有少数学生不上进,思维闲散,和兄弟班级差距大。要在本期获得理想成绩,老师和学生都要付出艰巨努力,要加强落实,培优辅差,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、主要措施
1、认真做好教学工作。认真研读新课程标准,钻研新教材,根据新课程标准,挖掘整合教材,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、激发学生的兴趣,兴趣是最好的老师。给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、开展分层教学,布置作业设置A、B、C三类,分层布置,分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关.
数学八年级下册老师工作3本学期我担任初二年级(6)、(10)班的数学教学工作,八年级的数学教学任务非常重,既要完成新课的教学任务,又要复习初一数学知识。同时要补差补缺,做好学生的思想工作,所以在制定八年级的教学时,一定要注意时间的安排,同时把握好教学进度。
一、学情分析
通过对上学期几次检测分析,发现(6)、(10)班学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上掌握了学习数学的方法和技巧,对学习数学兴趣浓厚。另一方面是相当一部分学生因为各种原因,数学已经落下许多知识,部分学生已丧失了学习数学的兴趣。
二、指导思想
以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。以提高学生中考成绩为出发点,注重培养学生的基础知识和基本技能,提高学生解题答题的能力和逻辑推理能力。同时完成八年级上册数学教学任务。
三、教学目标
知识技能目标:了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根。了解无理数和实数的概念,知道实数和数轴上的点一一对应;掌握全等三角形的概念、性质及判定和应用;理解轴对称的基本性质;理解正比例函数和一次函数的概念、性质并会画图,能利用函数图像解方程(组)及不等式等;掌握整式的乘除和因式分解的运算。能力目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
四、教材分析
第十二章 数的开方:
主要内容是平方根、立方根的概念和求法。他们是理解立方根的概念和求法,实数的意义和运算是基础。本章的难点是平方根和实数的概念。约需7课时。
第十三章 幂的运算:
主要内容有幂的运算、整式的乘法、乘法公式、整式的除法、因式分解。学好幂的运算性质是学好本章内容的基础。本章难点是整式乘法的转化,重点是乘法公式和整式的除法。约需22课时。
第十四章 勾股定理:
本章主要内容是勾股定理及勾股定理的应用,通过探索三角形的三边关系,得到勾股定理,同时还介绍了一种直角三角形的判定方法,最后介绍了勾股定理的应用。重点是勾股定理,难点是勾股定理的应用。约需7课时。
第十五章 平移和旋转:
本章内容为平移、旋转、中心对称和图形的全等,他是学行四边形及性质的基础。重点是平移和旋转的概念和特征;旋转对称图形及中心对称图形基础特征;认识图形的全等。难点是平移、旋转、中心对称和图形全等的灵活运用。约需18课时。
第十六章 平行四边形的认识:
本章主要内容认识平行四边形及几种特殊的四边形,确认图形的性质。学会识别不同的图形,并能根据图形的性质解决简单的推理和计算问题,学会合情合理推理与数学说理。重点是通过图形的变换认识图形的性质,难点是根据图形的性质解决简单推理与计算等问题。约需20课时。
五、教学措施
1、精心备课,设置好每个教学情境,激发学生学习兴趣和欲望。深入浅出,帮助学生理解各个知识点,突出重点,讲透难点。
2、加强对学生课后的辅导,尤其是中等生和后进生的基础知识的辅导,提高他们的解题作答能力和正确率。
3、精心组织单元测试,认真分析试卷中暴露出来的问题,并对其中大多数学生存在的问题集中进行分析与讲解,力求透彻。对于少部分学生存在的问题进行小组辅导,突破难点。
4、做好学生的思想教育工作,促进学生学习的积极性,从而提高学生的学习成绩。
六、课时安排
全书内容(含各章复习)与课时安排为
第十二章 数的开方------------7课时
第十三章 整式的乘除---------22课时
第十四章 勾股定理------------7课时
第十五章 平移与旋转-----------18课时
第十六章 平行四边形的认识-----------20课时
课题学-----------3课时
(第十三、十五、十六章考试与评讲各4课时,第十二、十四章考试与评讲各2课时,期末综合测试与评讲各3课时)
数学八年级下册老师工作4对这一学期的数学教学工作的,为了搞好这学期的数学教学工作,我做好以下几方面的工作:
1、理论学习
抓好教育理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课教学思想,树立现代化、科学化的教育思想。
2、做好各时期的
为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及初二的数学教学任务和内容,做好学期教学工作的总体和安排,并且对各单元、各课题的进度情况进行详细。
3、备好每堂课
认真钻研大纲和教材,做好初中各阶段的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以不为提高自己的教学理论水平和教学实践能力。
4、做好课堂教学
创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
5、批改作业
精批细改好每一位学生的每份作业,学生的作业缺陷,师生都心中有数。对每位同学的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。
6、做好课外辅导
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学生障碍,增强学生信心,尽可能“吃得了”。积极开展数学讲座,课外兴趣小组等课外活动。充分调动学生学习数学的积极性,扩
大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
总之通过做好教学工作的每一环节,尽最大的努力,想出各种有效的办法,以提高教学质量。
数学八年级下册老师工作5一、在思想方面:
坚决维护和遵守学校的各项规章制度,维护社会公德,做到严于律己。加强学习尤其是政治学习,不断提高自身的道德修养,为人师表,关心学生的学习、生活,做学生的良师益友。加强团结,与同事相处融洽,合作愉快,心往一处想,劲往一处使,组成一个团结协作的大家庭。
关爱学生,无私奉献。教师师德高尚的重要体现就是把自己的全部身心都献给学生,献给教育事业。本学期,我担任六年级语文教学工作。在工作中,我要注意转变观念,把学生视为平等的教育对象,而不是凌驾于学生之上。在教学过程中尊重学生的人格,建立平等、和谐的师生关系。对学生要关心爱护与严格要求相结合,不偏袒好学生,更不歧视差学生,要爱得有方,严得有度,特别是对后进生,决不讽刺挖苦他们,更不体罚和变相体罚他们,要善于发现和放大学生身上的闪光点,并为他们创造展示自我的机会,帮助学生树立信心,矫正不良的行为习惯。在工作中要有“四心“,即爱心、耐心、信心、恒心,以自己对学生的一片热爱和对教育事业的一片赤诚,坚持不懈的做好本职工作。同时还应该加强与学生家长的沟通,帮助父母重新认识自己的孩子,找到孩子真正的致差的原因,变革教育方法,并有意识地诱导家长反省自己的失误,认识孩子的发展变化,变盲目配合为协作教育。
二、在个人教学工作方面。
不断学习,不断充实和完善自己。因为要成为一名优秀教师,除了要具备良好的思想品德和高尚的道德情操,还需要具备较高水平的业务技能。向老教师学,向优秀教师学。教师肩负着教书育人的双重任务,要想出色地完成任务,我不仅要具备精深的专业知识,还要广泛涉猎其他相邻学科的知识领域,用丰富的知识武装自己的头脑。随着时代的前进,学生对教师的要求越来越高,加之新课程(初中数学教学工作:无私奉献)改革地推行,也开始呼唤新时代的新型教师。因此,为了能够更好地完成本职工作,无愧于学生、家长及社会的期望,无愧于人民教师的光荣称号,在以后的工作中,我要不断学习,努力提高自己的专业知识和专业素养,丰厚自己的积淀,尽快提高教学水平。使自己在业务上、思想上适应时代的发展需求,能够与时俱进、勇于创新,做一名创新型、科研型教师。要想给学生一杯水,我必须有一个源源不断的水源,那就是学习。
三、备课方面。
课堂是教师“传道、授业、解惑”的主阵地,是学生茁壮成长的快乐园。为了使每堂课短短的40分钟能够发挥其最大的效用,信息量多、形式活跃、贴近学生的年龄特点。我将注重在课前、课中、课后三个方面下功夫。课前认真备课。作到课前再备课,备教材、备学生,保证课前的准备工作及时、充分。课堂上积极为学生创造良好的轻松地学习氛围,愉快的心情是产生学习兴趣的重要因素,所以我将从激发学生的学习兴趣入手,充分地调动学生的学习积极性。课后及时反馈,记下教学中的成功点和失败点及改进方法。
在教学工作中,最重要的不是,而是怎样贯彻和实行自己的,而这份同时又是我的工作目标。在教学过程中难免遇到很多挫折和困难,但是我一定要严格要求自己,不断学习、完善和改进自己的工作,争取合格的甚至是超额完成自己制定的和目标,做到无愧于心,无愧于教师这一神圣的职业!
人教版九年级数学教案教案配套课件下载
#教案# 导语时光在流逝,从不停歇,我们迎来了新的学习生活,让我们对今后的教学工作做个吧。但是教学要写什么内容才能让人眼前一亮呢?以下是 为大家精心整理的内容,欢迎大家阅读。
篇一八年级下册数学教学
一、教材分析以《初中数学新课程标准》为依据,立足课本,本学期介绍二次根式、勾股定理、平行四边形、一次函数和数据的分析五章内容。本册书的5章内容涉及《数学课程标准》中“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容。其中对于“实践与综合应用”领域的内容,本册书安排了课题学习,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动落实“实践与综合应用”的要求。这5章大体上用相近内容相对集中的方式安排,第十六章、十九章基本属于“数与代数”领域,第十七章、十八章基本属于“空间与图形”领域,最后一章是“统计与概率”领域,这样安排有助于加强知识间的纵向联系。在各章具体内容的编写中,又特别注意加强各领域之间的横向联系。
二、学情分析
1.进一步加强基础知识的数学教学,培养学习好习惯
每次数学考试,基础知识的考察占大比重。但即使是平时比较好的同学,也经常在基础题上失分。所以,在以后的教学中,要夯实基础,做到每个学生都把握好基础题不失分。培养好的解题习惯,勤于思考,多学善问。
2.增强学生的数感
在数学教学中,培养学生对数字的敏感能力。比如,在化简二次根式时,就极大地运用了数感,无形中提高了做题的速度。其次,数感的培养,有利于学生对自己所做题目的感性检验,增加学生做题的正确率,有助于提高学生的审题能力,做到选择题“快,准,好”。
3. 培养学生的初步的逻辑推理和抽象思考等基本的数学能力
部分学生缺乏空间想象能力,而这一能力对学习数学是十分重要的,对今后高中学好空间几何起着举足轻重的作用。另外,数学就是一门逻辑性极强的科学,应着力培养学生的数学逻辑性,有助于学生做好证明题和大体步骤的完整解答。
三、教材目标及要求:
1、二次根式的重点是二次根式的性质及运算,难点是二次根式的化简及运算。
2、勾股定理:会用勾股定理和逆定理解决实际问题。
3、平行四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。
4、一次函数主要学习一次函数及其三种表达方式,包括正比例函数、一次函数的概念、图象、性质和应用。学会用函数的观点认识一元一次方程、一元一次不等式及二元一次方程组。本章重点内容是正比例函数、一次函数的概念、图象和性质。教学难点是培养学生初步形成数形结合的思维模式。
5、数据的分析
四、教学常规落实
严格遵守学校的各项规章制度,不迟到早退,积极参加各项活动及学习,团结协作。精心备课,备教材备学生,密切生活实际和学生实际,整合教学,运用好多媒体教学,利用一切可以利用的有利因素,为教学服务。上好每一节课,根据学生实际合理利用教学,上好每一节课。布置作业做到有的放矢,有针对性,有层次性。认真批改作业。同时对学生的作业批改及时、有效,分析并记录学生的作业情况,将他们在作业过程出现的问题作出及时反馈,针对作业中的问题确定个别辅导的学生,并对他们进行及时的指导。 积极做好学困生转化工作。对学习过程中有困难的学生,及时给予帮助,帮助他们找到应对措施,帮助他们渡过难关。
五、深入业务学习
认真学习业务理论,并做好一周一次的业务笔记,提高自己的理论水平,丰富自己的业务知识;积极参加一切课题研究活动,敢想敢干,敢于创新,不怕失败。在学习策略上及时指导学生,培养思维,方法技巧,提升能力。及时对教学活动作出反思,每周写出一至两个教学反思,真正体会自己的优缺点,做到有的放矢,进一步提高自己。充分备好每个教案,做到备学生,备教材。发挥多媒体教学优势,积极利用和制作课件,提高自己电化教学能力。
六、教学措施:
1、认真学习教育教学理论,结合落实课标理念。将学讲练和谐的课堂教学模式渗透于教学。让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。改进教学方法,充分利用多媒体,实物等创设情景进行教学,力求课堂教学的多样化、生活化和开放化,师生互动、生生互动,构建高效课堂。运用新课程标准的理念指导教学,积极更新教育理念,关心爱护学生,公平对待学生。
2、培养学生兴趣和良好习惯。兴趣是的老师,激发学生的兴趣,给学生适时介绍数学家,数学史,数学趣题,补充数学相应课外思考题,扩充,通过各种途径培养学生的兴趣。教育关键就是培养习惯,良好的学习习惯有助于学生稳步提高学习成绩,发展学生的非智力因素,促进学习兴趣与良好习惯培养。
3、创设和谐教学氛围。引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。
4、关注学生情感态度、学习方法、目标实施。引导学生积极归纳解题规律,引导学生一题多解,通过变式训练,培养学生透过现象看本质,提高学生举一反三的能力。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练。提高学生素质,培养学生的发散创新思维,提高学习效率,做到事半功倍。
5、做好课题研究。促进学生自主、合作,探究学习,把学生带入研究学习中,学会探究,合作,自主学习,拓展学生的知识面,培养兴趣,提高能力。开展丰富多彩的课外活动,课外调查,操作实践,以优带差,培养学生探究合作能力,师生共同提高。
篇年级下册数学教学
一、学情分析从上学期的期末考试来看,本班无论优秀率还是合格率都有不小的退步。优秀率仅仅只有 13%,而合格率也只达到 40%,两极分化的现象再一次增大,与我预期的目标有较大的差距。通过调阅学生的试卷,发现学生在知识运用上很不熟练,特别是对于解答综合性习题时欠缺灵活性。
二、指导思想
坚持党的教育方针,结合《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率,向 45 分钟要质量。一方面巩固学生的基础知识,另一方面提高学生运用知识的能力。特别是训练学生的探究思维能力,和发散式思维模式,提高学生知识运用的能力。并通过本学期的课堂教学,完成八年级下册的数学教学任务。
三、教材目标及要求:
1、 二次根式的重点是二次根式的运算,难点是根式四则混算及实际应用。
2、勾股定理:会用勾股定理和逆定理解决实际问题。其性质解决一些实际问题。 3、一次函数的重点是掌握一次函数的概念、性质,理解变量与常量的辩证关系,进一步认识数形结合的思维方法,并利用
4、平行 四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。
要求:知识技能目标:掌握二次根式的概念、性质及计算;掌握勾股定理及其逆定理;探究平行四边形、特殊四边形及梯形、等腰梯形性质与判定;学习一次函数的图像、性质与应用;会分析数据并从中获取总体信息。
过程方法目标:发展学生推理能力;建立函数建模的思维方式;理解勾股定理的意义与内涵;提高几何说理能力及统计意识。态度情感目标:丰富学生数学经验,增加逻辑推理能力,感受数学与生活的关联。班级教学目标:优秀率:15%;合格率:55%。
四、教材分析
第十六章 二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。
第十七章 勾股定理:本章主要探索直角三角形的三边关系,学习勾股定理及勾股定理的逆定理,学会利用三边关系判断一个三角形是否为直角三角形。教学重点:勾股定理及勾股定理的逆定理的理解与应用。教学难点:探索直角三角形三边关系时,理解勾股定理及勾股定理的逆定理。
第十八章 平行四边形:本章主要探究两类特殊的四边形的性质与判定,即平行四边形和梯形有关的性质与判定。教学重点:平行四边形的定义、性质和判定;特殊平行四边形(矩形、菱形、正方形)的性质与判定;梯形及特殊梯形(等腰梯形)的性质与判定。教学难点:平行四边形的性质与判定及其应用;特殊平行四边形的性质与判定及其应用;等腰梯形的性质与判定及其应用。
第十九章 一次函数:本章主要学习一次函数及其三种表达方式,包括正比例函数、一次函数的概念、图象、性质和应用。学会用函数的观点认识一元一次方程、一元一次不等式及二元一次方程组。本章重点内容是正比例函数、一次函数的概念、图象和性质。教学难点是培养学生初步形成数形结合的思维模式。第二十章 数据的分析:本章主要学习平均数、中位数和众数,理解它们所反映出的数据的本质。教学重点:求平均数、中位数与方差;理解平均数、中位数和众数所表达的含义;区别算术平均数与加权平均数之间的联系和区别。教学难点:求加权平均数、中位数和方差;根据平均数、加权平均数、中位数、众数、极差和方差对数据作出比较准确的描述。
五、教学措施
1、课前作好充分准备,备好教材,备好学生。精心设计探究问题,认真讲解方法概念,深入分析思维模式,做到重点突出,难点透彻。
2、加强课后总结和对学生的课后辅导。认真总结每一堂课的成败得失,深入学生了解课堂教学的实际效果,耐心辅导存在问题的学生。
3、搞好单元测试及试卷分析,针对试卷中存在的问题,及时取行之有效的补救措施,切实解决学生数学学习中存在的困惑。
篇三八年级下册数学教学
一、指导思想:以《数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据 、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想 和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文 明的重要组成部分。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利 于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
二、教材目标及要求:
1、分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。
2、反比例函数掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。
3、勾股定理:会用勾股定理和逆定理解决实际问题。
4、 四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。
5、 数据描述
三、教学措施:
1、加强教学“六认真”, 面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的`困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。
2、 重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。
3、 改革作业结构减轻学生负担。将学生按学习能力分成不同层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上有所提高。
4、 课后辅导实行流动分层。
四、教学进度
第十六章 分式 13课时
16、1分式 2课时
16、2分式的运算 6课时
16、3分式方程 3课时
复习小节与检测 2课时
第十七章 反比例函数 8课时
17、1 反比例函数 3课时
17、2实际问题与反比例函数 4课时
复习小节与检测 2课时
第十八章勾股定理 8课时
18、1勾股定理 3课时
18、2勾股定理的逆定理 3 课时
复习小节与检测 3课时
第十九章四边形 17课时
19、1平行四边形 5课时
19、2特殊的平行四边形 6课时
19、3梯形 2课时
19、4重心 2课时
复习小节与检测 2课时
第二十章数据描述 15课时
20、1数据的代表 6课时
20、2数据的波动 5课时
20、3数据分析 2课时
复习小节与检测 2课时
勾股定理证明
人教版九年级数学上册全套课件及配套教案,内容很多,这里无法全部复制,请到“人教版九年级数学上册全套课件及配套教案 site:flyedu.cn”下 载.
第二十一章 二次根式
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).
(3)掌握·=(a≥0,b≥0),=·;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1 二次根式 3课时
21.2 二次根式的乘法 3课时
21.3 二次根式的加减 3课时
教学活动、习题课、小结 2课时
21.1 二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).
问题2:由勾股定理得AB=
问题3:由方差的概念得S= .
二、探索新知
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0,有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.
解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.当x是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.
解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
七、教学反思:需注意中a的范围,以及的范围。
一定是直角三角形吗教案
勾股定理是怎么被证明出来的?
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识.其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了.稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方.如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的.其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多.如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年.其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52).所以现在数学界把它称为勾股定理,应该是非常恰当的.在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达.书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦.”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:4*(ab/2)+(b-a)2=c2化简后便可得:a2+b2=c2亦即:c=(a2+b2)(1/2)图2 勾股圆方图赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义.事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的.十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续.”。
勾股定理的证明方法(10种以上)
证法1(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 . 证法2(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90?, ∴ ∠AEH + ∠BEF = 90?. ∴ ∠HEF = 180?―90?= 90?. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90?, ∴ ∠EHA + ∠GHD = 90?. 又∵ ∠GHE = 90?, ∴ ∠DHA = 90?+ 90?= 180?. ∴ ABCD是一个边长为a + b的正方形,它的面积等于 . ∴ . ∴ .。
关于勾股定理的证明
勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。
这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。
从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。
右图剩下以c为边的正方形。于是 a^2+b^2=c^2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA' ≌△AA'C 。
过C向A''B''引垂线,交AB于C',交A''B''于C''。 △ABA'与正方形ACDA'同底等高,前者面积为后者面积的一半,△AA''C与矩形AA''C''C'同底等高,前者的面积也是后者的一半。
由△ABA'≌△AA''C,知正方形ACDA'的面积等于矩形AA''C''C'的面积。同理可得正方形BB'EC的面积等于矩形B''BC'C''的面积。
于是, S正方形AA''B''B=S正方形ACDA'+S正方形BB'EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。
这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上**,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。
即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。
故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。
② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。
后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。
则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。
② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。
它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。
如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。
另:八年级数学勾股定理的证明(介绍16种证明的方法)(数学教案) ydgz/。
叙述并证明勾股定理.
证明:如图 左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式 a 2 + b 2 +4* 1 2 ab= c 2 +4* 1 2 ab ,化简得a 2 +b 2 =c 2 .下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP ∥ BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP ∥ BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a 2 +b 2 =c 2。
勾股定理证明方法带图,较难的,多种方法
刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”后人根据这段文字补了一张图.大意是:三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方.以盈补虚,将朱方、青放并成弦方.依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在弦方内,那一部分就不动了. 以勾为边的的正方形为朱方,以股为边的正方形为青方.以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c的平方 ).由此便可证得a的平方+b的平方=c的平方. 这个证明是由三国时代魏国的数学家刘徽所提出的.在魏景元四年(即公元 263 年),刘徽为古籍《九章算术》作注释.在注释中,他画了一幅像图五(b)中的图形来证明勾股定理.由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」.亦有人用「出入相补」这一词来表示这个证明的原理.。
什么叫勾股定理有哪些方法可以用它证明题?
在任何一个直角三角形(RT△)中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理.即勾的平方加股的平方等于弦的平方 勾股定理(6张).(直角三角形两条直角边的平方和等于斜边的平方.)勾股定理是余弦定理的一个特例.这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”.(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”(驴桥定理——欧几里得《几何原本》第一篇的前5个命题是: 命题1:以已知线段为边,求作一等边三角形. 命题2:求以已知点为端点,作一线段与已知线段相等. 命题3:已知大小两线段,求在大线段上截取一线段与小线段相等. 命题4:两三角形的两边及其夹角对应相等,则这两个三角形全等. 命题5:等腰三角形两底角相等. 他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家).目前初二学生开始学习,教材的证明方法大多用赵爽弦图,证明使用青朱出入图. 勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一. 直角三角形两直角边的平方和等于斜边的平方.如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2;+b^2;=c^2;. 勾股定理指出 直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方. 也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a?+b?=c?. 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一. 中国古代著名数学家商高说:“若勾三,股四,则弦五.”它被记录在了《九章算术》中. 推广 1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义.即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和. 2.勾股定理是余弦定理的特殊情况. 勾股定理。
如何用小学的方法证明勾股定理?知道教下```谢谢
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长玫秸?叫蜛BDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子: 4*(ab/2)+(b-a)2=c2 化简后便可得: a2+b2=c2 亦即: c=(a2+b2)(1/2) 稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题. 再给出两种 1.做直角三角形的高,然后用相似三角形比例做出. 2.把直角三角形内接于圆.然后扩张做出一矩形.最后用一下托勒密定理.。
勾股定理的知识点
一定是直角三角形。
三边关系符合勾股定理的一定是直角三角形。没错,肯定是。
勾股定理,原称之为“勾股弦定理”。内容是,在直角三角形中,两直角边的平方和=斜边的平方。其公式是:勾方十股方=弦方。
既然前提是在直角三角形中,三边的关系有此定理,那么,符合这一定理三边关系的三角形,当然是直角三角形。此定理的逆定理成立。
如果按三角形内角的度数来划分的话,可以分为三类:直角三角形,锐角三角形和钝角三角形。
直角三角形的定义,指这个三角形的三个内角中,有一个角是直角,这样的三角形就是直角三角形;钝角三角形,指的是三角形的三个内角中,有一个角是钝角,这个三角形就是钝角三角形;锐角三角形指的是三角形的三个角都是锐角。
北师版九年级下册数学教案
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
4.直角三角形的性质
(1)、直角三角形的两个锐角互余。可表示如下:∠C=90° ∠A+∠B=90°
(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°
可表示如下: BC= AB
∠C=90°
(3)、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下: CD= AB=BD=AD
D为AB的中点
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90°
CD⊥AB
6、常用关系式
由三角形面积公式可得:AB CD=AC BC
7、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系 ,那么这个三角形是直角三角形。
8、命题、定理、证明
1、命题的概念
判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)
真命题(正确的命题)
命题
命题(错误的命题)
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理
用推理的方法判断为正确的命题叫做定理。
5、证明
判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
9、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
10数学口诀.
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
四边形
1.四边形的内角和与外角和定理:
(1)四边形的内角和等于360°;
(2)四边形的外角和等于360°.
2.多边形的内角和与外角和定理:
(1)n边形的内角和等于(n-2)180°;
(2)任意多边形的外角和等于360°.
3.平行四边形的性质:
因为ABCD是平行四边形?
4.平行四边形的判定:
5.矩形的性质:
因为ABCD是矩形?
6. 矩形的判定:
?四边形ABCD是矩形.
7.菱形的性质:
因为ABCD是菱形
8.菱形的判定:
?四边形四边形ABCD是菱形.
9.正方形的性质:
因为ABCD是正方形
(1) (2)(3)
10.正方形的判定:
?四边形ABCD是正方形.
(3)∵ABCD是矩形
又∵AD=AB
∴四边形ABCD是正方形
11.等腰梯形的性质:
因为ABCD是等腰梯形?
12.等腰梯形的判定:
?四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD∴ABCD四边形是等腰梯形
14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.
15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
三 公式:
1.S菱形 = ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)
2.S平行四边形 =ah. a为平行四边形的边,h为a上的高)
3.S梯形 = (a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四 常识:
※1.若n是多边形的边数,则对角线条数公式是: .
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
试读结束,阅读全文请下载
立即下载word文档
标签:
勾股定理
上一篇:八年级数学下册《一次函数》知识点总结
下一篇:八年级数学下册《二次根式》知识点总结
相关资料
八年级数学上册15.3分式方程第1课时分式方程的解法教案(新人教版)
八年级数学上册15.2分式的运算15.2.3整数指数幂教案(新人教版)
八年级数学上册15.2分式的运算15.2.2分式的加减第2课时分式的混合运算教案(新人教版)
八年级数学上册15.2分式的运算15.2.2分式的加减第1课时分式的加减教案(新人教版)
八年级数学上册15.2分式的运算15.2.1分式的乘除第2课时分式的乘方及乘方与乘除的混合运算教案(新人教版)
我们每个人手里都有一把自学成才的钥匙,这就是:理想、勤奋、毅力、虚心和科学 方法 ,不耻下问,多提问,多看、多学,以后一定会信手拈来。下面就是我为大家梳理归纳的内容,希望能够帮助到大家。
九年级下册数学教案:锐角三角函数的计算
一、教学目标
1. 通过观察、猜想、比较、具 体操 作等数学活动,学会用计算器求一个锐角的三角函数值。
2.经历利用三角函数知识解决实际 问题的过程,促进观察、分析、归纳、交流等能力的发展。
3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习 的好奇 心,培养学生与他人合作交流的意识。
二、教材分析
在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。在上节课中已经学习了30°, 45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提 出问题、分析问题、探究解决方法直至最终解决问题的过程。
三、学校及学生状况分析
九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象 逻辑思维 为主要发展趋势,但在很大程度上,学生仍然要依靠具体的 经验 材料和操作活动来理解抽象的逻辑关系。另外,计算器的使用可以极大减轻学生的负担。因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。
学生自小学起就开始使用计算器,对计算器的操作比较熟悉。同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。
四、教学设计
(一)复习提问
1.靠在墙 上,如果与地面的夹角为60°,的长度为3米,那么底端到墙的距离有几米?
学生活动:根据题意,求出数值。
2.在生活中,与地面的夹角总是60°吗?
不是,可以出现各种角度,60°只是一种特殊现象。
图1(二)创设情境引入课题
1?如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200 m。已知缆车的路线与平面的夹角为∠A=16 °,那么缆车垂直上升的距离是多少?
哪条线段代表缆车上升的垂直距离?
线段BC。
利用哪个直角三角形可以求出BC?
在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。
你知道sin 16°是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。 那么,怎样用科学计算器求三角函数呢?
用科学计算器求三角函数值,要用sin cos和tan键。教师活动:(1)展示下表;(2)按表口述,让学生学会求sin16°的值。按键顺序显示结果sin 16°sin16=sin 16°=0?275 637 355
学生活动:按表中所列顺序求出sin 16°的值。
你能求出cos 42°,tan 85°和sin 72°38′25″的值吗?
学生活动:类比求sin 16°的方法,通过猜想、讨论、相互学习,利用计算器求相应的三角函数值(操作程序如下表):
按键顺序显示结果cos 42°cos42 =cos 42°=0?743 144 825tan 85°tan85=tan 85°=11?430 052 3sin 72°38′25″sin72D′M′S
38D′M′S2
5D′M′S=sin 72°38′25″→
0?954 450 321
师:利用科学计算器解决本节一开始的问题。
生:BC=200sin 16°≈52?12(m)。
说明:利用学生的学习兴趣,巩固用计算器求三角函数值的操作方法。
(三)想一想
师:在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了 200 m,缆车由点B到达点D的行驶路线与 水平面的夹角为∠β=42°,由此你还能计算什么?
学生活动:(1)可以求出第二次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。(2)互相补充并在这个过程中加深对三角函数的认识。
(四)随堂练习
1.一个人由山底爬到山顶,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(结果精确到0.1 m)。
2.如图2,∠DAB=56°,∠CAB=50°,AB=20 m,求图中避雷针CD的长度(结果精确到0.01 m)。
图2图3
(五)检测
如图3,物华大厦离小伟家60 m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求大厦的高度(结果精确到0?1 m)。
说明:在学生练习的同时,教师要巡视指导,观察学生的学习情况,并针对学生的困难给予及时的指导。
(六)小结
学生谈学习本节的感受,如本节课学习了哪些新知识,学习过程中遇到哪些困难,如何解决困难,等等。
(七)作业
1.用计算器求下列各式的值:
(1)tan 32°;(2)cos 24?53°;(3)sin 62°11′;(4)tan 39°39′39″。
图42?如图4,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P,Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河宽(结果精确到1 m)。
五、教学 反思
1.本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,可以使学生充分认识到三角函数知识在现实世界中有着广泛的应用。本节课的知识点不是很多,但是学生通过积极参与课堂,提高了分析问题和解决问题的能力,并 且在意志力、自信心和理性精神 等方面得到了良好的发展。
2.教师作为学生学习的组织者、引导者、合作者和帮助者,依据教材特点创设问题情境,从学生已有的知识背景和活动经验出发,帮助学生取得了成功。
北师版数学初三下册教案
一、素质 教育 目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四) 总结 与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
九年级下册数学教案北师大
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
点击排行
随机内容
-
神话故事中国神话故事作文_神话故事中国神话故事作文500字
-
我们是一家人作文500字初一叙事作文_我们是一家人作文500字初一叙事作文怎么写
-
初二半命题作文- --改变了我 记叙文(600字左右)_半命题作文_____改变了我600字
-
高考满分作文及点评解析_高考满分作文及点评解析议论文
-
我想对您说作文500字评语_我想对您说作文500字评语大全
-
我的心爱之物作文450字优秀作文乐高_我的心爱之物作文450字优秀作文乐高怎么写
-
有关大自然的作文300字_有关大自然的作文300字小学生
-
以财富为话题的作文的结尾_以财富为话题的作文的结尾怎么写
-
写人作文500字初学
-
以感受为话题的作文400字_以感受为话题的作文400字左右